Register
Get forecast notifications
Create an account to receive email notifications when forecasts are published.
Login
Archived

Avalanche Forecast

Dec 26th, 2018–Dec 27th, 2018
Alpine
2: Moderate
The avalanche danger rating in the alpine will be moderate
Treeline
2: Moderate
The avalanche danger rating at treeline will be moderate
Below Treeline
2: Moderate
The avalanche danger rating below treeline will be moderate
Alpine
2: Moderate
The avalanche danger rating in the alpine will be moderate
Treeline
2: Moderate
The avalanche danger rating at treeline will be moderate
Below Treeline
1: Low
The avalanche danger rating below treeline will be low

Regions: Snoqualmie Pass.

New snow on Thursday will drive the avalanche danger. You are most likely to trigger an avalanche in areas where you find more than 6 inches of new snow. Weak layers, deep in the snowpack, maintain the threat of triggering a large and dangerous avalanche.

Snowpack Discussion

Regional Synopsis: December 26, 2018

In most parts of the state, a stout melt freeze crust was formed when it rained to high elevations around Thanksgiving. The one exception to this event was in the East North Zone, where the precipitation from the Thanksgiving storm was all snow. A quick storm at the end of November put a small amount of snow above the melt-freeze crust, and preserved the older basal facets in the northeastern areas.

Cold and clear weather dominated the first week in December, with valley fog and very cold temperatures east of the crest. The surface snow sat around and decomposed. Surface hoar grew large on top of this.

The jet stream took aim at the Pacific Northwest in the 2nd week of December.  Most notably, light storms buried and preserved a widespread layer of surface hoar and/or near surface facets on December 9th. From December 9th to December 23rd, storms kept coming. Freezing levels fluctuated, but never moved much above 5000ft throughout the Cascades (although the southernmost volcanoes and Mt. Hood saw rain well above 6000).

Initially, the storm track favored the northern zones. The accompanying avalanche cycle began on December 11th. Most of these slides were soft slabs, but some propagated widely on the December 9th layer. Higher snowfall totals in the West North resulted in very large (D3+) avalanches in the mountains along Hwy 542.

A second, and larger avalanche cycle occurred during heavy snowfall and strong wind events between December 18th and 20th. Although these cycles were once again most prevalent in the northern and eastern zones, big storm totals around Mt. Rainier tipped the balance down south as well. This 2nd cycle was impressive, with very large and destructive avalanches (some D4) reported. The culprit was once again the December 9th surface hoar/facets (and/or the basal facets in the northern and eastern zones).

Today we have a large difference in snowpack depths between the Pacific Crest and the Eastern Slope. This is nothing unusual, as more often than not the west side of the Cascades and the passes get more snow than areas further east. Moving forward, places with a deep snowpack (say greater than 5ft) and warmer temperatures may continue to gain strength. Areas with a shallow snowpack (say less than 3.5ft) may take much longer. In a general and applied sense, this means the avalanche danger/conditions may begin to diverge between the western and eastern zones.  

As the skies clear and we move into high pressure, take note as to which avalanche paths have run large on deep, weak layers, and those which haven’t. Be sure to track surface conditions, as this next period of cold, clear weather may create the next weak layer when the storm track does turn back toward us. As always, please share your photos and experiences with us!

Happy Holidays

Avalanche Problems

Storm Slabs

Check for how the new snow is bonding to the old snow surface by using tests on small, inconsequential slopes. Watch for areas of more than 6” of recently fallen or drifted snow. Use additional caution where you find wind drifted snow at upper elevations. If the skies clear, expect small loose avalanches in the new snow on steep, sunny slopes.

Release of a soft cohesive layer (a slab) of new snow that breaks within the storm snow or on the old snow surface. Storm-slab problems typically last between a few hours and few days. Storm-slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.

 

You can reduce your risk from Storm Slabs by waiting a day or two after a storm before venturing into steep terrain. Storm slabs are most dangerous on slopes with terrain traps, such as timber, gullies, over cliffs, or terrain features that make it difficult for a rider to escape off the side.

 

Storm slabs usually stabilize within a few days, and release at or below the trigger point. They exist throughout the terrain, and can be avoided by waiting for the storm snow to stabilize.

Aspects: All aspects.

Elevations: All elevations.

Likelihood: Possible

Expected Size: 1 - 1

Deep Persistent Slabs

Don’t let deep persistent slabs slip from your mind. While we think this layer is gaining strength, observations, like those from the Crystal backcountry, should cause us to pay attention. A weak layer of buried surface hoar and facets can be found  5-7 feet below the snow surface in areas above 5000 feet. Stop and consider this low likelihood-high consequence problem if you are entering big avalanche terrain at higher elevations. Areas similar to Red Mountain, Chair Peak, and Rampart Ridge could still harbor weak, old snow.

The best way to reduce the risk of the high consequence of deep persistent slab avalanches is to:

-Limit the amount of time you spend on or near large slopes 35 degrees and steeper.

-Put an extra buffer of terrain between where you travel and where avalanches could start, run, or stop.

-Stay away from features where avalanches are commonly triggered like: rocks, steep roll-overs and convexities, unsupported slopes ending in cliffs or steep drops, and areas of shallow, variable snow.

-When in doubt, avoid avalanche terrain.

Release of a thick cohesive layer of hard snow (a slab), when the bond breaks between the slab and an underlying persistent weak layer, deep in the snowpack or near the ground. The most common persistent weak layers involved in deep, persistent slabs are depth hoar or facets surrounding a deeply buried crust. Deep Persistent Slabs are typically hard to trigger, are very destructive and dangerous due to the large mass of snow involved, and can persist for months once developed. They are often triggered from areas where the snow is shallow and weak, and are particularly difficult to forecast for and manage. They commonly develop when Persistent Slabs become more deeply buried over time.

 

Deep Persistent Slabs avalanches can be destructive and deadly events that can take months to stabilize. You can trigger them from well down in the avalanche path, and after dozens of tracks have crossed the slope.

 

A snowboarder triggered this Deep Persistent Slab near treeline, well down in the path.

Deep, persistent slabs are destructive and deadly events that can take months to stabilize. You can triggered them from well down in the avalanche path, and after dozens of tracks have crossed the slope. Give yourself a wide safety buffer to handle the uncertainty, potentially for the remainder of the season.

Aspects: All aspects.

Elevations: Alpine, Treeline.

Likelihood: Unlikely

Expected Size: 2 - 2