Register
Get forecast notifications
Create an account to receive email notifications when forecasts are published.
Login
Archived

Avalanche Forecast

Jan 2nd, 2020–Jan 3rd, 2020
Alpine
2: Moderate
The avalanche danger rating in the alpine will be moderate
Treeline
2: Moderate
The avalanche danger rating at treeline will be moderate
Below Treeline
1: Low
The avalanche danger rating below treeline will be low
Alpine
3: Considerable
The avalanche danger rating in the alpine will be considerable
Treeline
2: Moderate
The avalanche danger rating at treeline will be moderate
Below Treeline
2: Moderate
The avalanche danger rating below treeline will be moderate

Regions: Cascades - East.

New snow and sustained strong winds continue to build deep drifts at upper elevations. Large avalanches can be initiated on steep slopes where thick slabs of wind deposited snow may be found. Warm daytime temperatures may provoke a round of loose wet avalanches that entrain wet snow. Identify these areas of concern with your group and choose your terrain carefully. 

Discussion

On Thursday, observers near Mission Ridge found the recently formed wind slabs to be well bonded to the snow below. Winds gusted at over 100mph, and did cause heavy drifting! We have minimal new information from the areas closer to the crest in the East Central zone in the past day or two. If you plan to head out, be sure to check the neighboring zone forecasts. A surprising human triggered avalanche happened near Washington Pass on Thursday. A skier remotely (from a distance of ~150ft away) triggered a persistent slab avalanche on an east aspect at 6,700ft above Hwy 20. No one was caught or carried, but check the East North zone for more. 

Snowpack Discussion

January 02, 2020 (The regional synopsis is updated every Thursday @ 6 pm)

Happy New Year! 

The pacific northwest rung in the new year with a winter storm cycle that brought changing conditions to our region. This storm exhibited three characteristics: warm, wet, and windy. Let’s take a look at the end of 2019, the beginning of 2020, and where we can go from here. 

Wrapping up 2019

The last few days of December were generally quiet and cold. The snowpack seemed to enjoy this break in the weather. Lingering unstable snow from the pre-Christmas storms gained strength, persistent weak layers appeared to stabilize, and avalanche hazard decreased in all forecast zones. All in all 2019 ended quiet and uneventful… until the New Year’s Eve weather party showed up …  

Quiet weather led to lower avalanche danger during the last week of 2019. Hogsback, White Pass, WA. Photo: Andy Harrington

Blowing into 2020

A warm, wet, and windy weather system blew into the northwest for New Year’s Eve and New Year’s Day. This brought rapidly changing conditions and increasing avalanche hazard to all areas. 

  • Warm: Unfortunately this system brought with it warm air. Freezing levels measured near the coast reached 9000’ on the afternoon of the 31st. Many weather stations recorded above freezing temperatures during the onset of precipitation. 

  • Wet: While this system wasn’t as wet as the atmospheric river prior to Christmas, it still produced impressive water numbers in many areas. The bulk of the precipitation seemed to be focused on the Passes and Volcanoes, and water spilled over the crest to places like Washington Pass and Leavenworth. Sadly, when combined with the warm temperatures, this translated to rain well into the near treeline band (or higher) for most areas. The main exception appeared to be in the northeastern cascades, where locations like Washington Pass remained all snow. 

 

HurRidge

MtBaker

WaPass

Stevens

Leanenworth

SnoqPass

MtRainier

MtHood

Precipitation (in)

1.84

3.39

1.42

4.56

1.06

6.19

5.39

5.41

Snow (in)

-

15

-

12

0

3

10

8

Table 1: Precipitation and storm totals from selected weather stations during the New Year’s Eve Storm. “-” 24hr storm snow not measured. 

  • Windy: While the warm and wet were impressive, it’s the winds that may set this storm apart. Most weather stations recorded very strong and extreme winds during the storm. Alpental exceeded 100mph just after midnight to ring in the new year. Any dry snow at high elevations was redistributed by the wind and snow surfaces were transformed. 

Table 2: Wind speeds from New Year’s Eve from selected wind sites. Note the sustained period of winds between 40-60mph.

Eventually, temperatures cooled, the rain turned back to snow, and winds calmed. Many locations picked up additional snow as the storm wound down, but 2020 was already off and rolling with its first major storm.

New Year’s Resolutions

The active weather pattern that started the new year appears to continue. The snowpack and avalanche conditions will continue to change. So, what can your New Year Avalanche Resolutions be? 

  1. Read the forecast. This is a great way to monitor conditions even if you aren’t heading into the mountains. 

  2. Get out in the snow! 

  3. Submit an observation. Tell the avalanche center what you saw while out in the snow by submitting an observation and sending in a photo. 

Thanks for all of your support in 2019 and here’s to 2020!

-Dallas

 

Avalanche Problems

Wind Slabs

Strong winds continue to drift snow both new and old snow into firm, cohesive slabs. These drifts will be deeper and more significant at higher elevations. Check to see how these slabs are bonding with the snow below. Are you experiencing shooting cracks through the snow or hear whumphing collapses? Is the wind actively transporting snow? Look for recent avalanches, and use small test slopes to check how easily the snow can slide.

Some of these slabs have grown large and may not exhibit direct signs of instability before releasing, so think twice before entering any features that appear heavily duned by the wind. More deeply buried weak layers may still be a concern in some areas. Consider the consequences before entering slopes steeper than 35 degrees. Be extra cautious around convex rolls, below ridgelines, and near terrain traps and strainers, such as stands of trees.

Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.

 

Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..

 

Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.

 

Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.

Aspects: All aspects.

Elevations: Alpine, Treeline.

Likelihood: Possible

Expected Size: 1 - 1

Loose Wet

Rain on fresh snow over a crust is a great recipe for loose wet avalanches. Wet snow may entrain more wet snow as it moves downhill on steep slopes, creating powerful debris piles. Rollerballs and recent, fan shaped avalanches with ball shaped debris piles are signs that you may be able to trigger these. Stay off of, and out from underneath steep open slopes to avoid these.

Release of wet unconsolidated snow or slush. These avalanches typically occur within layers of wet snow near the surface of the snowpack, but they may quickly gouge into lower snowpack layers. Like Loose Dry avalanches, they start at a point and entrain snow as they move downhill, forming a fan-shaped avalanche. They generally move slowly, but can contain enough mass to cause significant damage to trees, cars or buildings. Other names for loose-wet avalanches include point-release avalanches or sluffs. Loose Wet avalanches can trigger slab avalanches that break into deeper snow layers.

 

Travel when the snow surface is colder and stronger. Plan your trips to avoid crossing on or under very steep slopes in the afternoon. Move to colder, shadier slopes once the snow surface turns slushly. Avoid steep, sunlit slopes above terrain traps, cliffs areas and long sustained steep pitches.

 

Several loose wet avalanches, and lots of pinwheels and roller balls.

Loose wet avalanches occur where water is running through the snowpack, and release at or below the trigger point. Avoid terrain traps such as cliffs, gullies, or tree wells. Exit avalanche terrain when you see pinwheels, roller balls, a slushy surface, or during rain-on-snow events.

Elevations: Treeline, Below Treeline.

Likelihood: Possible

Expected Size: 1 - 1