Register
Get forecast notifications
Create an account to receive email notifications when forecasts are published.
Login
Archived

Avalanche Forecast

Apr 9th, 2019–Apr 10th, 2019
Alpine
1: Low
The avalanche danger rating in the alpine will be low
Treeline
1: Low
The avalanche danger rating at treeline will be low
Below Treeline
1: Low
The avalanche danger rating below treeline will be low
Alpine
1: Low
The avalanche danger rating in the alpine will be low
Treeline
1: Low
The avalanche danger rating at treeline will be low
Below Treeline
1: Low
The avalanche danger rating below treeline will be low

Regions: Olympics.

A cooling trend and increased winds should generally help to limit avalanche danger on a Hurricane Ridge snowpack that has experienced some rain or very light accumulation of wet snow. Watch for building shallow wind slabs at upper elevations on Wednesday. Your biggest hazards are likely to be icy or breakable crust conditions along with terrain hazards exposed by the spring melt.

Discussion

Snow and Avalanche Discussion

We think that recent warm temperatures and a rain/snow mix on Monday evening generally consolidated the 12" of snow that fell at Hurricane Ridge through Sunday morning. No skier or natural avalanches were observed over the weekend, but we suspect that the rain produced a cycle of wet avalanches on Monday and Monday night.

Prior to this storm, large terrain obstacles were readily exposed with plenty of bare ground showing. North and northeast slopes had many glide cracks, but these can be present on any aspect. Reports from around the region have indicated that creeks are gushing and opening up with snow bridges collapsing. Cornices are sagging. Use caution if you travel near these features. Expect low snow cover everywhere below 4500 ft. Keep in mind that smaller features may be covered up by recent snow.

Snowpack Discussion

April 9th, 2019

Spring Conditions

The snowpack and weather have shifted solidly to spring-like conditions. A major warm-up started in mid-March with a prolonged period of strong sun and warm temperatures. This created a major difference between the snowpack on sunny slopes and that on shaded aspects. More recently, warm, wet, and sometimes weak spring storms have brought more rain than snow. The bulk of the precipitation with these storms focused on the southern forecast zones. Even so, mid-elevation rain established a dramatic snow line (about 4-4,500ft) below which the snowpack is minimal to non-existent in most zones. Going into the second week in April, intense snow and wind drove a prolonged period of High danger at Mt Hood.

A crown of a very large avalanche (D3+) above Mt. Hood Meadows resort. 04/08/2019. Photo Credit: Peter Moore.

Challenging Weather Forecasts

The Cascades have been experiencing unsettled spring weather with rain to many low and mid-elevation slopes and snow at upper elevations. Spring weather forecasts in the Cascades are notoriously challenging. With these storms, the weather models have been inconsistent and the accuracy has been limited to 12-24 hours, at best. A trend has been significant precipitation amounts for the Mount Hood area and other south-central Cascade volcanoes. 

Very bare southeast aspects of Rock Mtn/Nason Ridge. April 2nd. Photo: Josh Hirshberg

Shrinking Snowpack

From the peak height of snow in mid to late February through early April, mountain weather stations in the 4,000-5,000ft range showed an average of 27% decrease in height of snow. The percentage decrease ranged from 22-29%. This year's spring snowmelt is much earlier than normal. If you’re traveling in the mountains, the loss of snow coverage is most noticeable on southerly, sun-exposed slopes and below 4,000ft. On northerly aspects and slopes above 5,500ft, the snowpack has seen less dramatic changes and has even maintained some dry layers. On upper elevation shaded slopes there’s still potential for large wet slab avalanches with prolonged warm temperatures or high elevation rain events.

A natural loose wet avalanche (D1), Lichtenberg Mtn, N, 4,850ft. 4/7/2019. Photo: Will Govus

Spring avalanche considerations

As you head into the mountains there are a few questions to ask yourself common to spring avalanche conditions:

  1. Can you trigger avalanches due to new snow?

    1. If so, would they be storm slabs or wind slabs? And where?

  2. Can you trigger avalanches due to warming or rain?

    1. Will recent snow be warmed enough to result in loose wet avalanches?

    2. Will these avalanches be predictable point releases or more destructive wet slabs or gouging loose wet avalanches?

    3. What are the recent high and low temperatures and the forecasted temperatures during the time you’ll be in the mountains?

    4. How is the cloud cover contributing to the melting or freezing of surface snow? Did clear skies allow for a sufficient overnight freeze? Will the sun be strong enough to weaken surface layers?

Debris from a natural loose wet avalanche (D2), Lichtenberg Mtn, SW, 5,000ft. 4/7/2019. Photo: Josh Hirshberg

Other Considerations

In addition to daily avalanche hazard, the early snowmelt has created other travel considerations. Some roads and lower elevation slopes may not have enough continuous snow coverage for travel on snow machines. Holes melted around rocks, trees, and creeks could create a fall hazard. When nighttime temperatures and cloud cover allow for surface freezes, bring appropriate equipment to mitigate slip and fall hazard on steep slopes.

The last daily avalanche forecast for all zones will be issued for April 14th. Statewide mountain weather forecast and weekly avalanche condition advisories will continue through May. The weather station data is available year round. Keep checking the advisories and help us out by submitting observations when you are in the mountains.

Glide avalanches and holes opening up in rocky terrain on an east aspect of Mount Herman. 4/3/19 Photo: Andrew Kiefer

Avalanche Problems

Wind Slabs

A cooling trend will allow wind slabs to build if enough new snow falls with wind on Wednesday. Light snow is forecast to peak during the late morning hours. These slabs are primarily expected to be a hazard if they push you into an exposed terrain feature or over a cliff. Monitor for new snow and wind transport. If you find 6” of wind transported snow above the old snow interface, steer around wind-loaded terrain features steeper than 35 degrees.

Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.

 

Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..

 

Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.

 

Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.

Aspects: All aspects.

Elevations: Alpine.

Likelihood: Possible

Expected Size: 1 - 1