Avalanche Forecast
Regions: Stevens Pass.
Fluctuating snow levels and mixed precipitation will bring changing avalanche problems with elevation. New snow and wind will create shallow slabs at upper elevations, while wet avalanches problems linger below. Travel cautiously as the snowpack is still adjusting after the recent warm and wet storms.
Discussion
Over the past 3 days, Stevens Pass received close to 4 inches of water. Precipitation came as rain up to 6000ft and saturated the snowpack. A widespread natural avalanche cycle occurred Thursday. The majority of avalanches were large (D2) with a few very large (D3) avalanches reported as well. The natural cycle began as dry storm slabs, before being overrun by wet loose avalanches as snow transitioned to rain.Â
Precipitation will continue as snow levels lower to 3500-4000ft over the next 24 hours. As rain transitions back to snow, fresh storm slabs will build at upper elevations. Despite the gradual cooling trend, the snowpack is still saturated from the recent rain event, and a lingering potential for wet avalanches remains.
Evidence of the recent avalanche cycle with numerous natural storm slab and wet loose avalanches on the SE side of Lichtenberg Mountain. 01/23/20 Photo: Matt Primomo
Snowpack Discussion
Update: January 24th 2020Â (The regional synopsis is updated every Thursday @ 6 pm)
During the afternoon of January 23, 2020 one person was buried and killed by an avalanche that released from the roof of a home north of Blewett Pass near Highway 97. The elevation was approximately 1,700ft above sea level. She was found underneath 4 to 5ft of debris. She was discovered and excavated some time after the accident, where CPR was performed. Additional emergency response arrived within 15 minutes, but they were unable to revive her.
Our deepest condolences go out to the family and friends of the victim.
Â
January to Remember
A parade of storms since the New Year began brought relentless precipitation, and impressive snowpack growth throughout the region. Areas along the west slopes of the Cascades have rarely gone more than 24-48hrs without precipitation. In the past three weeks, the Volcanoes and Passes received 20-28in of water equivalent, translating into incredible snowfall totals - Mt. Baker Ski Area reported 240in of new snow since January 1. The majority of NWAC weather station sites are reporting snow depths well over 120% of normal for this time of year. Ongoing precipitation and fluctuating snow levels have maintained elevated avalanche danger throughout the month, with avalanche warnings issued for nearly all forecast zones on 4 separate days (January 6, 7, 12, 23). Â
Snow depth imagery for the Northwest Region on January 23, 2020. Many areas in the Cascades and Olympics show well over 100 inches of snow on the ground. Image courtesy of NOHRSC Regional Snow Analysis.Â
Location
January 1-23 Precipitation (Water Equivalent)
Hurricane Ridge
14.79â
Mt Baker Ski Area
28.65â
Harts Pass
11.2â
Stevens Pass
20.26â
Leavenworth
4.01â
Snoqualmie Pass
25.43â
Paradise, Mt Rainier
24.13â
Mt Hood Meadows
22.34â
Table 1: Precipitation totals for select weather stations January 1-23, 2020. Huge numbers at Baker, Rainier, Hood, and the Passes and there is still another week left this month.
MLK Weekend and a Pattern of Rain on Dry Snow
After a prolonged cold period with arctic air and lowland snow, MLK weekend brought unseasonably warm temperatures and a rapid thaw. High snow levels and rain caused wet avalanche activity throughout the region January 18-19. A few very large natural avalanches occurred at upper elevations where all precipitation fell as snow. A cooling trend followed, creating a pronounced crust that is now buried in almost all forecast zones. Cold, dry snow January 21-22 was followed by a rapid warm-up and the most significant rain on snow event yet, causing avalanche warnings on January 23 for 5 of our 10 forecast zones.
The crown of a very large avalanche around 10,000ft on the Newton Headwall of Mt Hood which likely occurred during the storm late last week. 01/19/20 Photo: Kevin Kayl
The buried MLK crust is widespread throughout the region and a prominent marker in the snowpack. Crystal Backcountry 01/20/20 Photo Jeremy Allyn
One More Week To Go
January isnât over yet, and the long term forecast continues to show an active and wet weather pattern for the Northwest. The low-snow, drought-like conditions of the early season seem like a distant memory at this point. Weâve certainly made up for lost time in 2020, and this already impressive month looks to end with a bang.
Avalanche Problems
Storm Slabs
Incoming precipitation will fall as snow at upper elevations and build shallow storm slabs. Slabs will be thicker and more reactive in wind loaded terrain. Avalanches within new and wind loaded snow will be possible to trigger on upper elevation slopes 35 degrees and steeper. Use small inconsequential slopes to test the new snow. Shooting cracks, collapses, and recent avalanches are all obvious signs of unstable snow. Steer around large, steep, convex slopes where you find 6in or more of fresh snow. Stick to lower angled and supported terrain to reduce your risk.
Release of a soft cohesive layer (a slab) of new snow that breaks within the storm snow or on the old snow surface. Storm-slab problems typically last between a few hours and few days. Storm-slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.
You can reduce your risk from Storm Slabs by waiting a day or two after a storm before venturing into steep terrain. Storm slabs are most dangerous on slopes with terrain traps, such as timber, gullies, over cliffs, or terrain features that make it difficult for a rider to escape off the side.
Storm slabs usually stabilize within a few days, and release at or below the trigger point. They exist throughout the terrain, and can be avoided by waiting for the storm snow to stabilize.
Aspects: All aspects.
Elevations: Alpine, Treeline.
Likelihood: Possible
Expected Size: 1 - 1
Loose Wet
Additional low elevation rain and a slow cooling trend will maintain the potential for wet loose avalanches near and below treeline. If you find wet unconsolidated surface snow, avoid slopes steeper than 35 degrees, especially near cliffs, creeks and other terrain traps. Although wet avalanche activity likely peaked already, all the recent rain we’ve received should give us pause. Remember that loose wet avalanches are often surprisingly powerful and being caught in even a small one can be dangerous.
Release of wet unconsolidated snow or slush. These avalanches typically occur within layers of wet snow near the surface of the snowpack, but they may quickly gouge into lower snowpack layers. Like Loose Dry avalanches, they start at a point and entrain snow as they move downhill, forming a fan-shaped avalanche. They generally move slowly, but can contain enough mass to cause significant damage to trees, cars or buildings. Other names for loose-wet avalanches include point-release avalanches or sluffs. Loose Wet avalanches can trigger slab avalanches that break into deeper snow layers.
Travel when the snow surface is colder and stronger. Plan your trips to avoid crossing on or under very steep slopes in the afternoon. Move to colder, shadier slopes once the snow surface turns slushly. Avoid steep, sunlit slopes above terrain traps, cliffs areas and long sustained steep pitches.
Several loose wet avalanches, and lots of pinwheels and roller balls.
Loose wet avalanches occur where water is running through the snowpack, and release at or below the trigger point. Avoid terrain traps such as cliffs, gullies, or tree wells. Exit avalanche terrain when you see pinwheels, roller balls, a slushy surface, or during rain-on-snow events.
Elevations: Treeline, Below Treeline.
Likelihood: Possible
Expected Size: 1 - 1