Avalanche Forecast
Regions: Olympics.
A strong March sun should drive changing conditions throughout the day and create very slope dependent avalanche concerns. In locations receiving direct sunshine, look for the snow to shed from trees and rocks causing natural loose wet avalanches. As you transition to shaded terrain, you’ll need to change your focus to identify and avoid steeper wind loaded slopes.
Discussion
It's March and with that comes a notable shift in the strength of the sun and how it can quickly impact the snow surface. Youâll need to monitor changing conditions Sunday as the recent snow sees the sun for the first time. Park Rangers reported nearly 10â of new snow at their weather plot Saturday morning. This snow accumulated on a variety of snow surfaces including firm crusts, bare ridgelines, and old soft snow. Avalanche concerns should be limited to this recent snow, its bonds to the underlying surface, and how it changes with the sunshine.
Snowpack Discussion
February 27, 2020 (The regional synopsis is updated every Thursday @ 6 pm)
In the lead up to last weekend, dry, clear and cold conditions produced surface hoar in many areas as well as faceted snow (check out the National Avalanche Centerâs encyclopedia for more details). These weak grain types were not difficult to find and recreationists and professionals across the region began to wonder what role these weak snow surfaces would play when the next storm arrived.
Surface Hoar was not difficult to observe during this period of high pressure. This picture is from 2/21 on an SSE aspect, 5,000â at Stevens Pass just a day before it may have been buried. Photo: Josh Hirshberg
We didnât have to wait too long, as a major storm arrived on Sunday 2/23, creating dangerous avalanche conditions for most zones. This system dropped close to 2â of snow at Mt. Baker while areas to the south along the west slopes of the Cascades saw closer to 1 foot. Areas along the east slopes of the Cascades also saw significant new snow amounts with Blewett Pass and Mission Ridge receiving around 6-8â of fresh snow.Â
The wind was also a major factor with this storm from about Stevens Pass southward. Multiple stations recorded winds over 80mph and some went over 100mph. This wind was enough to strip surfaces down to old crusts on windward aspects, leaving leeward aspects with wind slabs and touchy cornices. In the case of Mt. Hood, relentless winds this season have stripped the snow down to blue ice from one of our previous atmospheric river events, creating slide for life conditions on certain slopes.Â
The old snow interface, termed 2/22 for the day it was buried, has us thinking hard about the snowpack moving forward. In the northern part of the region, less wind allowed for more storm than wind slabs, with avalanches that released on both interstorm layers and on the buried 2/22 interface for a day or two following the storm. As you moved further southward or eastward, reactivity on the 2/22 interface was trending downward or non-existent after a natural avalanche cycle that immediately followed the storm. Was the storm potent enough to wipe out the surface hoar and facets? There was a surprising natural avalanche on Stevens Pass during the evening of Monday 2/24, which is suspected to have run on small facets. This avalanche and continued snowpack observations around the region proves that in specific areas, reactive weak snow still existed.Â
This natural avalanche failed 2ft deep on the 2/22 interface on a SE aspect near 5700ft on Cowboy Mountain. 02/25/20. Photo: Stevens Pass Ski Patrol
On Tuesday, the sun started to shine in some locations, bringing back the threat of wet avalanches and again making us wonder about how warming would affect the 2/22 interface. We never reached the tipping point for widespread wet avalanche activity, but rollerballs and snow shedding off trees and rocks were certainly present in many zones. Drizzle or light snow made an appearance on Wednesday along many west-side zones. Thursday saw a return to warm temperatures and sunny skies all the way from Mt. Hood to Stevens Pass with cooler and cloudier conditions for the North Cascades. All in all, it was a quiet week avalanche-wise and the 2/22 wasn't activated.Â
We have one more dry mild day before we move into a stormy Saturday. During this stretch, weâll continue to monitor buried weak snow grains for distribution and reactivity. Check your local forecast zone for the latest.Â
Avalanche Problems
Loose Wet
Don’t expect it to take long for the sun to change the cold dry snow on steep sunny slopes. As it does so, the snow surface should become wet. Snow will likely fall from trees and rocks, and you could see rollerballs and natural loose wet avalanches. This is your clue to steer clear of similar slopes. In many locations these loose wet avalanches may travel on a firm crust formed earlier this week, allowing them to move far and fast. These loose avalanches could even pull out small slabs failing on the interface with the old snow surface. You’ll want to be mindful of the slopes above you. If they are receiving direct sun, they could avalanche, even if you are in the shade.
Just as the sun can cause an unstable snow surface, it could also create unstable cornices. Don’t linger under these looming beasts during periods of sunny weather and warming temperatures.
Release of wet unconsolidated snow or slush. These avalanches typically occur within layers of wet snow near the surface of the snowpack, but they may quickly gouge into lower snowpack layers. Like Loose Dry avalanches, they start at a point and entrain snow as they move downhill, forming a fan-shaped avalanche. They generally move slowly, but can contain enough mass to cause significant damage to trees, cars or buildings. Other names for loose-wet avalanches include point-release avalanches or sluffs. Loose Wet avalanches can trigger slab avalanches that break into deeper snow layers.
Travel when the snow surface is colder and stronger. Plan your trips to avoid crossing on or under very steep slopes in the afternoon. Move to colder, shadier slopes once the snow surface turns slushly. Avoid steep, sunlit slopes above terrain traps, cliffs areas and long sustained steep pitches.
Several loose wet avalanches, and lots of pinwheels and roller balls.
Loose wet avalanches occur where water is running through the snowpack, and release at or below the trigger point. Avoid terrain traps such as cliffs, gullies, or tree wells. Exit avalanche terrain when you see pinwheels, roller balls, a slushy surface, or during rain-on-snow events.
Aspects: East, South East, South, South West, West.
Elevations: All elevations.
Likelihood: Likely
Expected Size: 1 - 1
Wind Slabs
As you move onto more shaded aspects or to higher elevation terrain, you’ll need to adjust your mindset and watch for wind loaded slopes. Look for smooth pillow-like drifts and cornices to point out where a lingering wind slab may lie. If you suspect a slope is wind-loaded, look for lower angle areas and slopes away from convex rollovers. While wind slabs could exist on any aspect, you’re most likely to see them on NW-N-E aspects at mid and upper elevations.
Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.
Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..
Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.
Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.
Aspects: All aspects.
Elevations: Alpine, Treeline.
Likelihood: Possible
Expected Size: 1 - 1