Avalanche Forecast
Regions: Snoqualmie Pass.
Continued snow and wind through Sunday evening will be enough to maintain dangerous avalanche conditions at upper elevations. If you notice wind-drifted snow or shooting cracks through the snow as you travel, head for lower angle terrain.
Snowpack Discussion
February 13, 2020 (The regional synopsis is updated every Thursday @ 6 pm)
Heart of Winter
The action has been non-stop so far in 2020 with several widespread natural avalanche cycles and a few recent close calls. The active weather pattern has kept us all on our toes, especially Januaryâs barrage of storms bringing seemingly endless precipitation and dramatic snowpack growth. Ongoing snow, wind, and rain continued into February, and a not-so-ordinary atmospheric river event recently left its mark on the region. The second week of February brought the first stretch of high pressure in weeks, allowing the snowpack to gain strength and the avalanche danger to ease between storms. Now, in the heart of winter, we have a deep and healthy snowpack with snow depths throughout the Cascades and Olympics near 100% of normal. Looking ahead, each day brings new changes to the upper snowpack, and a dynamic pattern with direct action events (storm-driven avalanche danger) will likely be par for the course.
Atmospheric River AftermathÂ
Model simulation for February 5-6th, 2020 showing an Atmospheric River (AR) with a less than common northwest-southeast orientation as it impacts the region. This orientation allowed for strong westerly winds and more favorable upslope flow than a more typical AR approaching from the southwest. Image courtesy of the Center for Western Weather and Water Extremes, UC San Diego. (Link)
An atmospheric river impacted the region on February 5th-8th, causing a string of notable events. This storm favored the Central Cascades and Stevens Pass in particular, which experienced continuous heavy snow and rain for 86 hours, amounting to almost 70in of snow with about 7.5in of water equivalent. Not surprisingly, atmospheric rivers often go hand in hand with avalanche warnings, which were issued for 3 consecutive days at Stevens Pass from February 5th-7th, along with high danger in all other zones. Heavy rain fell at low elevations and even caused a significant mudslide on SR 410 between Enumclaw and Crystal Mountain, closing the road for 4 days and knocking out communications to 9 mountain weather stations for a week. As the AR exited the Northwest, and natural avalanche activity tapered off, conditions still remained touchy to human traffic on February 8th and 9th. Several triggered avalanches were reported that weekend, most notable of which was a close call near Mt. Baker Ski Area:
On February 8th, a skier was fully buried in an avalanche adjacent to Mt. Baker Ski Area. The avalanche was triggered by a traveler from a different party. Mt. Baker Ski Patrol was on the scene immediately, located the victim quickly, dug them out, and cleared the airway. The individual survived and reported no injuries. The avalanche was about 1ft deep and eventually broke up to 500ft wide. NNW aspect 5500ft. Photo: Mt. Baker Ski Patrol
Clear skies on Sunday, February 9th gave observers a chance to document the widespread avalanche cycle in the Stevens Pass zone that occurred February 5th-8th, including this view of crowns from large natural avalanches in the Berne Camp Chutes with Glacier Peak in the background. Photo: Matt Primomo
High Pressure before Presidentâs Day Weekend
The week of February 10th brought the longest stretch of dry weather so far in 2020. A notable northwest wind event redistributed snow throughout the region and drove an isolated wind slab problem in most zones. Generally, it was the quietest few days avalanche-wise in weeks. However, a significant human-triggered avalanche occurred near White Pass on February 12th. Fortunately, no one was caught or injured. The incident provided a good reminder that even during periods of lower avalanche danger when avalanches are unlikely, outlier events can and do happen. The winter snowpack will always pose some level of uncertainty, and big triggers like cornice fall can produce surprising results.  Â
The crown of a human-triggered avalanche on a northeast aspect at 6700ft in the Hogsback area near White Pass. Two travelers unintentionally triggered a cornice, which dropped onto the slope below and triggered a very large avalanche. 2/12/20 Photo: White Pass Ski Patrol
Avalanche Problems
Storm Slabs
Snoqualmie Pass has received over 2 feet of new snow since Thursday night in all elevation bands and snow should continue through Sunday night. The start of these storms contained very strong winds that created pockets of wind-deposited snow on leeward slopes. Specific terrain features such as unsupported slopes or wind drifted areas at the base of cliffs have been reactive the past few days, with natural, human, and explosive triggers producing small avalanches. Sensitive new cornices have also formed and failed in the zone, while older cornices have begun to destabilize in isolated locations due to warming. As these slabs and cornices continue to grow, any slopes that have not already reached their tipping point may be primed to create larger avalanches. With a variety of snow surfaces in the zone prior to the recent snowfall, slabs may act differently as you travel due to the way the snow has bonded to these surfaces. Additionally, some weak snow from early in the storm has been reactive in many tests, and may not be the only inter-storm layer of concern. You should be continually checking the bonding of the snow to both the old snow surface and within the slab as you travel by using tests such as hand pits and small test slopes. If you find poor bonding, strong snow over weak snow, or see evidence of wind-drifted snow, you should avoid slopes steeper than 35 degrees.
Release of a soft cohesive layer (a slab) of new snow that breaks within the storm snow or on the old snow surface. Storm-slab problems typically last between a few hours and few days. Storm-slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.
You can reduce your risk from Storm Slabs by waiting a day or two after a storm before venturing into steep terrain. Storm slabs are most dangerous on slopes with terrain traps, such as timber, gullies, over cliffs, or terrain features that make it difficult for a rider to escape off the side.
Storm slabs usually stabilize within a few days, and release at or below the trigger point. They exist throughout the terrain, and can be avoided by waiting for the storm snow to stabilize.
Aspects: All aspects.
Elevations: All elevations.
Likelihood: Likely
Expected Size: 1 - 1