Avalanche Forecast
Regions: Snoqualmie Pass.
Stormy weather will create new avalanche issues, causing the danger to rise throughout the day. Steer around open slopes greater than 35 degrees when you suspect the wind drifted snow into thicker slabs and when you notice temperatures warming resulting in snow turning to rain.
Snowpack Discussion
February 27, 2020 (The regional synopsis is updated every Thursday @ 6 pm)
In the lead up to last weekend, dry, clear and cold conditions produced surface hoar in many areas as well as faceted snow (check out the National Avalanche Centerâs encyclopedia for more details). These weak grain types were not difficult to find and recreationists and professionals across the region began to wonder what role these weak snow surfaces would play when the next storm arrived.
Surface Hoar was not difficult to observe during this period of high pressure. This picture is from 2/21 on an SSE aspect, 5,000â at Stevens Pass just a day before it may have been buried. Photo: Josh Hirshberg
We didnât have to wait too long, as a major storm arrived on Sunday 2/23, creating dangerous avalanche conditions for most zones. This system dropped close to 2â of snow at Mt. Baker while areas to the south along the west slopes of the Cascades saw closer to 1 foot. Areas along the east slopes of the Cascades also saw significant new snow amounts with Blewett Pass and Mission Ridge receiving around 6-8â of fresh snow.Â
The wind was also a major factor with this storm from about Stevens Pass southward. Multiple stations recorded winds over 80mph and some went over 100mph. This wind was enough to strip surfaces down to old crusts on windward aspects, leaving leeward aspects with wind slabs and touchy cornices. In the case of Mt. Hood, relentless winds this season have stripped the snow down to blue ice from one of our previous atmospheric river events, creating slide for life conditions on certain slopes.Â
The old snow interface, termed 2/22 for the day it was buried, has us thinking hard about the snowpack moving forward. In the northern part of the region, less wind allowed for more storm than wind slabs, with avalanches that released on both interstorm layers and on the buried 2/22 interface for a day or two following the storm. As you moved further southward or eastward, reactivity on the 2/22 interface was trending downward or non-existent after a natural avalanche cycle that immediately followed the storm. Was the storm potent enough to wipe out the surface hoar and facets? There was a surprising natural avalanche on Stevens Pass during the evening of Monday 2/24, which is suspected to have run on small facets. This avalanche and continued snowpack observations around the region proves that in specific areas, reactive weak snow still existed.Â
This natural avalanche failed 2ft deep on the 2/22 interface on a SE aspect near 5700ft on Cowboy Mountain. 02/25/20. Photo: Stevens Pass Ski Patrol
On Tuesday, the sun started to shine in some locations, bringing back the threat of wet avalanches and again making us wonder about how warming would affect the 2/22 interface. We never reached the tipping point for widespread wet avalanche activity, but rollerballs and snow shedding off trees and rocks were certainly present in many zones. Drizzle or light snow made an appearance on Wednesday along many west-side zones. Thursday saw a return to warm temperatures and sunny skies all the way from Mt. Hood to Stevens Pass with cooler and cloudier conditions for the North Cascades. All in all, it was a quiet week avalanche-wise and the 2/22 wasn't activated.Â
We have one more dry mild day before we move into a stormy Saturday. During this stretch, weâll continue to monitor buried weak snow grains for distribution and reactivity. Check your local forecast zone for the latest.Â
Avalanche Problems
Wind Slabs
One of the major impacts of this storm will be the winds. Moderate to strong winds are expected at all elevations. This should easily transport the new snow and form slabs on the lee sides of ridges and mid-slope gullies. Poor visibility may make it hard to visually identify and avoid wind loaded slopes. You need to find other clues like blowing snow, scoured surfaces, and snow plastered on trees to help you anticipate which slopes could harbor wind slabs. If you suspect an area is wind-loaded, give it a wide berth and seek out lower angled terrain.
These wind slabs will form on top of the snow from this weekend’s storm. While you’re more likely to trigger a newly forming slab, avalanches could fail down into this recent snow in isolated areas. You’re most likely to see larger and deeper avalanches on NW-N-E aspects at mid and upper elevations, especially where the terrain is steep and rocky. Two avalanches were reported Sunday from Snoqualmie Pass that failed at the base of the recent snow. Both occurred in the near treeline band in steep, rocky, and slightly wind affected areas. Observations from the Pass found weak surface hoar at the base of the recent storm snow about a foot below the snow surface. If an avalanche fails on this snow it could break widely or trigger low on the slope.
Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.
Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..
Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.
Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.
Aspects: All aspects.
Elevations: Alpine, Treeline.
Likelihood: Possible
Expected Size: 1 - 1
Loose Wet
Snow levels should be on the rise Monday, as warmer air moves into the region. We expect snow to change to rain during the morning at the Pass. When you feel the temperatures warm, or see rain falling on snow, anticipate loose wet avalanches. New rollerballs and wet heavy snow could be your first clue that conditions are changing. As they do, navigate around steep slopes and be leery of what’s above your head. As the rain/snow line continues to rise, you could see loose wet avalanches well into the near treeline band.
Release of wet unconsolidated snow or slush. These avalanches typically occur within layers of wet snow near the surface of the snowpack, but they may quickly gouge into lower snowpack layers. Like Loose Dry avalanches, they start at a point and entrain snow as they move downhill, forming a fan-shaped avalanche. They generally move slowly, but can contain enough mass to cause significant damage to trees, cars or buildings. Other names for loose-wet avalanches include point-release avalanches or sluffs. Loose Wet avalanches can trigger slab avalanches that break into deeper snow layers.
Travel when the snow surface is colder and stronger. Plan your trips to avoid crossing on or under very steep slopes in the afternoon. Move to colder, shadier slopes once the snow surface turns slushly. Avoid steep, sunlit slopes above terrain traps, cliffs areas and long sustained steep pitches.
Several loose wet avalanches, and lots of pinwheels and roller balls.
Loose wet avalanches occur where water is running through the snowpack, and release at or below the trigger point. Avoid terrain traps such as cliffs, gullies, or tree wells. Exit avalanche terrain when you see pinwheels, roller balls, a slushy surface, or during rain-on-snow events.
Elevations: Below Treeline.
Likelihood: Possible
Expected Size: 1 - 1