Avalanche Forecast
Regions: Snoqualmie Pass.
You may be able to trigger wind slab avalanches at upper elevations that formed since Monday. Expect cooling temperatures, light to moderate snow and northwest wind for Tuesday. Watch for low snow coverage below 4,500ft with open creeks and exposed rocks.
Discussion
Snow and Avalanche Discussion:
About 6 inches of snow could accumulate at Snoqualmie Pass on Wednesday with snow falling just above the pass elevation. If you're traveling above treeline, you may find colder, winter-like avalanche conditions from snow that fell since Friday. On Sunday, observers reported a widespread cycle of natural and triggered loose wet avalanches and even a glide avalanche. Alpental patrol triggered multiple shallow slabs in the new snow on Sunday morning. Much of the low elevation snowpack is wet and may see a minimal freeze.
Be sure to consider all the hazards that come with spring in the mountains. Factor in a good margin for error as hard to predict events like cornice fall, glide avalanches, icefall, rockfall, and a general âshed cycle.â If surfaces freeze and become firm, bring the right equipment to mitigate the hazard of sliding down icy slopes.
Debris from a natural loose wet avalanche (D2) on Stevens pass, Lichtenberg Mtn, SW, 5,000ft. A cycle of similar avalanches occurred at Snoqualmie Pass on Sunday. 4/7/2019. Photo: Josh Hirshberg
Snowpack Discussion
April 9th, 2019
Spring Conditions
The snowpack and weather have shifted solidly to spring-like conditions. A major warm-up started in mid-March with a prolonged period of strong sun and warm temperatures. This created a major difference between the snowpack on sunny slopes and that on shaded aspects. More recently, warm, wet, and sometimes weak spring storms have brought more rain than snow. The bulk of the precipitation with these storms focused on the southern forecast zones. Even so, mid-elevation rain established a dramatic snow line (about 4-4,500ft) below which the snowpack is minimal to non-existent in most zones. Going into the second week in April, intense snow and wind drove a prolonged period of High danger at Mt Hood.
A crown of a very large avalanche (D3+) above Mt. Hood Meadows resort. 04/08/2019. Photo Credit: Peter Moore.
Challenging Weather Forecasts
The Cascades have been experiencing unsettled spring weather with rain to many low and mid-elevation slopes and snow at upper elevations. Spring weather forecasts in the Cascades are notoriously challenging. With these storms, the weather models have been inconsistent and the accuracy has been limited to 12-24 hours, at best. A trend has been significant precipitation amounts for the Mount Hood area and other south-central Cascade volcanoes.Â
Very bare southeast aspects of Rock Mtn/Nason Ridge. April 2nd. Photo: Josh Hirshberg
Shrinking Snowpack
From the peak height of snow in mid to late February through early April, mountain weather stations in the 4,000-5,000ft range showed an average of 27% decrease in height of snow. The percentage decrease ranged from 22-29%. This year's spring snowmelt is much earlier than normal. If youâre traveling in the mountains, the loss of snow coverage is most noticeable on southerly, sun-exposed slopes and below 4,000ft. On northerly aspects and slopes above 5,500ft, the snowpack has seen less dramatic changes and has even maintained some dry layers. On upper elevation shaded slopes thereâs still potential for large wet slab avalanches with prolonged warm temperatures or high elevation rain events.
A natural loose wet avalanche (D1), Lichtenberg Mtn, N, 4,850ft. 4/7/2019. Photo: Will Govus
Spring avalanche considerations
As you head into the mountains there are a few questions to ask yourself common to spring avalanche conditions:
-
Can you trigger avalanches due to new snow?
-
If so, would they be storm slabs or wind slabs? And where?
-
-
Can you trigger avalanches due to warming or rain?
-
Will recent snow be warmed enough to result in loose wet avalanches?
-
Will these avalanches be predictable point releases or more destructive wet slabs or gouging loose wet avalanches?
-
What are the recent high and low temperatures and the forecasted temperatures during the time youâll be in the mountains?
-
How is the cloud cover contributing to the melting or freezing of surface snow? Did clear skies allow for a sufficient overnight freeze? Will the sun be strong enough to weaken surface layers?
-
Debris from a natural loose wet avalanche (D2), Lichtenberg Mtn, SW, 5,000ft. 4/7/2019. Photo: Josh Hirshberg
Other Considerations
In addition to daily avalanche hazard, the early snowmelt has created other travel considerations. Some roads and lower elevation slopes may not have enough continuous snow coverage for travel on snow machines. Holes melted around rocks, trees, and creeks could create a fall hazard. When nighttime temperatures and cloud cover allow for surface freezes, bring appropriate equipment to mitigate slip and fall hazard on steep slopes.
The last daily avalanche forecast for all zones will be issued for April 14th. Statewide mountain weather forecast and weekly avalanche condition advisories will continue through May. The weather station data is available year round. Keep checking the advisories and help us out by submitting observations when you are in the mountains.
Glide avalanches and holes opening up in rocky terrain on an east aspect of Mount Herman. 4/3/19 Photo: Andrew Kiefer
Avalanche Problems
Wind Slabs
New snow and northwesterly wind will build fresh slabs. Wind slabs will be localized to leeward slopes near the top of ridges. Watch for fresh cornices and areas of deeper drifts where you feel stiffer snow at upper elevations. Steer around obvious drifts and slopes over 35 degrees where you see cracks in the snow. Avoid being on or under cornices.
Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.
Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..
Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.
Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.
Aspects: All aspects.
Elevations: Alpine, Treeline.
Likelihood: Possible
Expected Size: 1 - 1