Register
Get forecast notifications
Create an account to receive email notifications when forecasts are published.
Login
Archived

Avalanche Forecast

Dec 28th, 2019–Dec 29th, 2019
Alpine
2: Moderate
The avalanche danger rating in the alpine will be moderate
Treeline
2: Moderate
The avalanche danger rating at treeline will be moderate
Below Treeline
1: Low
The avalanche danger rating below treeline will be low
Alpine
2: Moderate
The avalanche danger rating in the alpine will be moderate
Treeline
2: Moderate
The avalanche danger rating at treeline will be moderate
Below Treeline
1: Low
The avalanche danger rating below treeline will be low

Identify and avoid specific terrain features such as steep slopes below cornices and convex rollovers where you could be more likely to trigger a lingering wind slab. Use visual clues such as drifts and textured snow surfaces to clue you into terrain that could harbor wind loaded snow.

Snowpack Discussion

December 26, 2019 (The regional synopsis is updated every Thursday @ 6 pm)

No matter where you are in the northwest, the snowpack looks a world different than it did a week ago. A major storm, widespread avalanches, developing weak layers, and an initially thin snowpack made for a hectic week. Let’s take a look at a few large scale trends for our holiday season. 

A very large natural avalanche (D3) on the Shuksan Arm near Mt Baker that occurred during the storm cycle. Photo: Adam U. 

Wet and Wild

“Some of the highest precipitation rates I’ve ever seen.” “Absolutely puking!” “Rivers running in the streets.” “Snowing snow hard I can’t see my hand in front of my face.” These were all statements we heard describing the wet and wild storm that impacted the Northwest from about Thursday (12/19) through Sunday night (12/22). Water totals were staggering in many locations (Table 1). For Hurricane Ridge, Mt Baker, Washington Pass, and high elevation terrain this deluge translated into significant snowfall. However, warm air in the central and southern parts of the region brought rain well into the near treeline bands. Whether your favorite spot saw rain or snow, four things are clear. 1. This was a huge loading event. 2. A widespread natural and triggered avalanche cycle (up to D3) occurred. 3. Avalanche danger spiked during and just after the storm before trending down through the week. 4. The snowpack changed dramatically. 

Location

Precipitation 12/19-22

Hurricane Ridge

4.97”

Mt Baker Ski Area

7.35”

Washington Pass

3.53”

Stevens Pass

6.28”

Leavenworth

2.94”

Snoqualmie Pass

7.89”

Crystal Mt Ski Area

7.45”

Paradise, Mt Rainier

6.57”

Mt Hood Meadows

2.18”

Table 1: Precipitation totals for select weather station locations December 19-22.   

The Emergence of Persistent Slab Avalanche Problems

Coming out of this huge loading event, there was hope that many of the early season weak layers had been destroyed. Unfortunately, this was not the case in some locations. Old weak snow layers reared their heads in areas east of the Cascade Crest and near Crystal Mountain. While the exact extent and character of these layers can differ slightly, most locations are finding a layer of weak sugary facets associated with a crust about a foot above the ground. Persistent slabs are tricky to assess. Do not solely rely on snowpits and snowpack tests to help you choose terrain. How will these layers change going forward? Only time and observations will tell. 

You may find weak sugary facets near a crust about 12 inches above the ground similar to what you see here. Photo: Jesse Charles

Low Tide Snowpacks During the Holidays

The storm this past week definitely helped the meager early-season snowpacks in all locations. Areas like Hurricane Ridge, Mt Baker, and Washington Pass experienced a jump of 20 or more inches in their snow depths over the past week. However, even with these increases, an early season snowpack still describes most locations. Expect numerous obstacles as you travel including open creeks, rocks, and trees. With this thin snowpack, limited access, and difficult travel we still have limited observations in some regions. 

Open, deeply incised creeks in the Alpental Valley. Photo: Dallas Glass

Lack of information leads to a higher than normal degree of uncertainty. If you travel to higher elevations or more remote trailheads, recognize you could experience different conditions than the forecast suggested. You can help us fill in the gaps by submitting your observation here. 

Happy Holidays! 

-Dallas Glass

Avalanche Problems

Wind Slabs

Observations from around the West South Saturday reported stubborn wind slabs near ridge crest and on mid-slope gullies. These potential avalanches are a few days old and becoming harder to trigger. When conditions are like this, you can turn your attention to specific features where you are more like to trigger an avalanche. Convex rollovers, steep slopes below cornices, and unsupported terrain are all locations you could trigger a lingering wind slab. Keep your eyes open for clues such as wind drifts and textured snow surfaces to indicate where wind loading occurred. 

At lower elevations, you could encounter wet snow avalanches. If you see roller balls or experience sticky surface snow, steer around slopes greater than 35 degrees.

Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.

 

Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..

 

Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.

 

Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.

Aspects: All aspects.

Elevations: Alpine, Treeline.

Likelihood: Possible

Expected Size: 1 - 1

Persistent Slabs

Snowpack observations and explosive testing by Cyrstal Mountain ski patrol continue to help us gain confidence that this weak layer is gaining strength. Conditions seem to indicate that it would take a large trigger such as a cornice fall or other avalanche to cause this layer to fail. An NWAC forecaster at White Pass Saturday identified this persistent weak layer in two profiles but did not see any associated avalanches. Remember, White Pass did not receive the same substantial loading during last week’s storm as other locations. If you are in the Crystal or White Pass areas, you could find a layer of facets and/or buried surface hoar associated with a crust about a foot above the ground on W-N-E aspects above 5800’. We’ll continue to monitor this layer going forward.

Release of a cohesive layer of soft to hard snow (a slab) in the middle to upper snowpack, when the bond to an underlying persistent weak layer breaks. Persistent layers include: surface hoar, depth hoar, near-surface facets, or faceted snow. Persistent weak layers can continue to produce avalanches for days, weeks or even months, making them especially dangerous and tricky. As additional snow and wind events build a thicker slab on top of the persistent weak layer, this avalanche problem may develop into a Deep Persistent Slabs.

 

The best ways to manage the risk from Persistent Slabs is to make conservative terrain choices. They can be triggered by light loads and weeks after the last storm. The slabs often propagate in surprising and unpredictable ways. This makes this problem difficult to predict and manage and requires a wide safety buffer to handle the uncertainty.

 

This Persistent Slab was triggered remotely, failed on a layer of faceted snow in the middle of the snowpack, and crossed several terrain features.

Persistent slabs can be triggered by light loads and weeks after the last storm. You can trigger them remotely and they often propagate across and beyond terrain features that would otherwise confine wind and storm slabs. Give yourself a wide safety buffer to handle the uncertainty.

Aspects: North, North East, East, West, North West.

Elevations: Alpine, Treeline.

Likelihood: Unlikely

Expected Size: 2 - 2