Register
Get forecast notifications
Create an account to receive email notifications when forecasts are published.
Login
Archived

Avalanche Forecast

Feb 18th, 2019–Feb 19th, 2019
Alpine
2: Moderate
The avalanche danger rating in the alpine will be moderate
Treeline
2: Moderate
The avalanche danger rating at treeline will be moderate
Below Treeline
2: Moderate
The avalanche danger rating below treeline will be moderate
Alpine
3: Considerable
The avalanche danger rating in the alpine will be considerable
Treeline
3: Considerable
The avalanche danger rating at treeline will be considerable
Below Treeline
3: Considerable
The avalanche danger rating below treeline will be considerable

Regions: Mt Hood.

An incoming storm should build fresh but shallow wind slabs by the end of the day.  However, it's the potential for a low-likelihood - high consequence persistent slab avalanche that should continue to shape your travel choices, steering you away from slopes capable of producing large avalanches. 

Discussion

Snow and Avalanche Discussion

As recently as Monday, February 18th, Mt. Hood pro-patrol is finding the same weak snow (1-2 mm facets) over a hard crust on northerly aspects below treeline roughly 3 feet below the snow surface. What has changed is that we haven't had an avalanche release down to this depth, human or explosive triggered, in several days over the busy holiday weekend. 

So the ingredients for a destructive persistent slab avalanche remain in place, but they have become harder to find and to trigger. When choosing how you travel through terrain, keep the odds in your favor by choosing simpler terrain at any elevation not capable of producing a large avalanche.

The new and significant round of snow and wind begins late Tuesday afternoon and continues through Wednesday will test this potentially dormant interface. 

We are thrilled you are enjoying winter and traveling (safely) in the backcountry. Take a moment and submit an observation for the Mt. Hood area, especially for places less traveled.

Snowpack Discussion

February 15, 2019

Since February 8th, the mountains (and low elevation cities) of the Pacific Northwest have experienced cold and very stormy weather. Significant snowfall has added up in all forecast zones. Records from Snoqualmie Pass DOT avalanche workers back to 1973 show that February 11-12th set a record for the most snow recorded in a 24hr period at that location. The table below shows storm totals starting February 8th through the morning of the 13th.

5 day totals ending morning of Feb 13th

Water Equivalent (inches)

24hr storm totals

(inches)

Difference in Height of Snow (inches)

Hurricane Ridge

1.97

N/A

+ 30

Mt. Baker

1.94

44

 

Washington Pass

1.66

NA

+ 16

Stevens Pass

2.71

49

 

Snoqualmie Pass

3.91

80

 

Mission Ridge

1.86

38

 

Crystal

2.91

59

 

Paradise

4.55

N/A

 

White Pass

N/A

57 (4400ft)

+ 26 (5800ft)

Mt. Hood Meadows

4.70

43

 

Heavy precipitation brought many mountain regions to their tipping point. Avalanches ran readily with a peak of snowfall intensity. For Stevens Pass, Snoqualmie Pass, East Central, West South, Mt Hood, and possibly West Central zones we have good confirmation that this cycle happened from the night of February 11th through the 12th. In other zones, snow totals haven’t been significant enough for widespread avalanche cycles, or we lack data (like in the East South zone).

A natural persistent slab avalanche (D2.5) on a southeast aspect at 6,600ft. Grindstone Mtn in Icicle Canyon. Likely ran 2/12. Photo: Matt Primomo

The high rates of precipitation drove avalanches in the storm snow. Notably, a persistent weak layer of facets and surface hoar was buried in most zones on February 8th. Storms produced a widespread and prolonged cycle of avalanches on the February 8th interface, involving a variety of aspects and elevations. Local ski patrols, highway workers, and backcountry travelers reported extensive avalanching with widely propagating crowns and very sensitive conditions. With less stormy weather, observers have just begun to get a sense of the extent of the avalanche activity. Triggering persistent slab avalanches will be a concern for backcountry travelers in zones where the February 8th weak layer is active for at least the near, if not distant future. Stay tuned for more updates.

Large surface hoar near Snow Lake Divide on February 7, 2019 just before it was buried on the 8th. Photo: Jeremy Allyn

Avalanche Problems

Wind Slabs

On Tuesday, observe where winds are transporting snow and building fresh wind slabs near and above treeline. NW winds sometimes form wind slabs on unusual aspects in the Mt. Hood area. Approach steep unsupported slopes with wind-drifted snow cautiously, feeling for firm or hollow sounding snow as a sign that wind slabs may be present. You can stay safe by traveling on ridges, wind-scoured areas and moderately angled terrain.  

Where wind slabs linger near treeline and overlap with the persistent slab potential, don't thread the needle between these avalanche problems and stick to slopes 30 degrees or lower. A triggered avalanche may step down into deeper weak layers to create deadly avalanches, so think seriously before testing larger slopes.

Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.

 

Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..

 

Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.

 

Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.

Aspects: All aspects.

Elevations: Alpine, Treeline.

Likelihood: Possible

Expected Size: 1 - 1

Persistent Slabs

The snowpack structure remains intact for persistent slab avalanches around 3' in depth near and especially below treeline, but they are becoming harder to find and less likely to trigger over time. We haven't had any of the clear signs that are being reported in other parts of the Cascades, like whumpfing as the weak layer collapses or even human triggered avalanches.  

While the likelihood of triggering a large and destructive avalanche continues to gradually decrease, the potentially high consequences should shape your terrain choices such that you continue to choose lower angled and supported slopes.

Release of a cohesive layer of soft to hard snow (a slab) in the middle to upper snowpack, when the bond to an underlying persistent weak layer breaks. Persistent layers include: surface hoar, depth hoar, near-surface facets, or faceted snow. Persistent weak layers can continue to produce avalanches for days, weeks or even months, making them especially dangerous and tricky. As additional snow and wind events build a thicker slab on top of the persistent weak layer, this avalanche problem may develop into a Deep Persistent Slabs.

 

The best ways to manage the risk from Persistent Slabs is to make conservative terrain choices. They can be triggered by light loads and weeks after the last storm. The slabs often propagate in surprising and unpredictable ways. This makes this problem difficult to predict and manage and requires a wide safety buffer to handle the uncertainty.

 

This Persistent Slab was triggered remotely, failed on a layer of faceted snow in the middle of the snowpack, and crossed several terrain features.

Persistent slabs can be triggered by light loads and weeks after the last storm. You can trigger them remotely and they often propagate across and beyond terrain features that would otherwise confine wind and storm slabs. Give yourself a wide safety buffer to handle the uncertainty.

Elevations: Treeline, Below Treeline.

Likelihood: Unlikely

Expected Size: 1 - 2