Register
Get forecast notifications
Create an account to receive email notifications when forecasts are published.
Login
Archived

Avalanche Forecast

Feb 22nd, 2020–Feb 23rd, 2020
Alpine
3: Considerable
The avalanche danger rating in the alpine will be considerable
Treeline
3: Considerable
The avalanche danger rating at treeline will be considerable
Below Treeline
2: Moderate
The avalanche danger rating below treeline will be moderate
Alpine
3: Considerable
The avalanche danger rating in the alpine will be considerable
Treeline
3: Considerable
The avalanche danger rating at treeline will be considerable
Below Treeline
2: Moderate
The avalanche danger rating below treeline will be moderate

Regions: Olympics.

A strong storm brings heavy snow, strong winds a dramatic increase in avalanche danger as the day wears on. Dial back your terrain selection to slopes less than 30 degrees as wind slabs grow large near and above treeline with storm slabs building at lower elevations once 8” of snow accumulates. Uncertainty exists on NW-N-NE-E aspects where some weak snow was buried on Saturday and could produce avalanches that break above you or on lower parts the slope.

Discussion

What a difference 24 hours makes! 6 days of quiet weather left the Olympics with low avalanche danger Thursday through Saturday, but by Sunday the snowpack rapidly develops slabs on top of potentially weak surfaces or crusts and that necessitates a rapid reset of our terrain selection mindset.

A dusting of new snow on Saturday helped to bury weak snow. NPS rangers tracking snow surfaces found that the widespread facets previously found near treeline partially survived slightly above freezing temperatures, but were beginning to break down. Surface hoar may not have survived the warmer temperatures. There are enough facets remaining that we have concerns about a potentially reactive interface going into storm snow loading on Sunday.

On days like Sunday, if you see signs of avalanche activity, conditions will only get worse and you need to dial your terrain selection even further back.

Snowpack Discussion

February 20, 2020 (The regional synopsis is updated every Thursday @ 6 pm)

Intermittent Storms

January’s non-stop pattern of storms extended into the first week of February. Since then, we’ve transitioned to more intermittent storms with notable stretches of high pressure and dry weather. We now see more variability through the region in the snowpack layering and avalanche conditions than in January. 

Significant periods of calm weather in February have allowed avalanche danger to decrease between storms. During the clear periods, strengthening late winter sun and gradual warming has brought some loose wet avalanche cycles to sunny slopes. Even so, from February 1st-20th there were 10 days when one or more zones were forecasted at all Low danger. In comparison, the month of January had zero days with any zone forecasted at all Low avalanche danger. 

Surface hoar near Snoqualmie Pass. February 19th. Photo: Ely Gerbin

Looking Forward

As we look forward, there are a number of considerations that are pertinent to most zones. The pattern of storms separated by clear periods may form new weak layers and interfaces to monitor. Many zones hold variable surfaces that warrant consideration as a travel hazard. In the Mt Hood Meadows area, two fatalities were related to falls on slick surfaces over President’s Day weekend. Another important consideration is the cornice growth that occurred in the past month from predominantly west winds. Very large cornices loom on ridges in most zones, except for possibly the Olympic Mountains. Future warming could be the added ingredient needed for cornices to fall. A close call with a cornice-triggered avalanche near White Pass on February 12th is a reminder of the potential hazard that cornices can pose. 

 

A party of three triggered this avalanche from below on a southeast aspect at 5400ft near Skyline Lake, Stevens Pass on February 16th. Two members of the party were fully buried and one was partially buried. The party self-rescued and no injuries were sustained. Photo: Dustin Riggs 

Weak Layers

So far this season, we’ve had limited persistent weak layers to deal with. February’s periods of calm weather developed a couple of weak layers and problematic interfaces that later got buried in the snowpack. On a whole, weak layers have been short-lived and have generally resolved within a couple of days of being buried. While the following weak layers are no longer major concerns, some readers may want a more in-depth understanding of them before venturing into the mountains.

In the Stevens Pass and East Central zones, the February 4th interface consisted of a thin layer of small (0.5-1.0mm) facets sitting on the stout February 1st melt forms (crust). The crust was widespread on all aspects up to at least 7500ft and the facets were most prominent on the northern half of the compass (west through north through east aspects). A major storm and avalanche cycle February 4th-7th totaled over 60 inches of snow. The February 4th interface was responsible for widespread avalanching including slides up to size D3 at most elevations. As direct action avalanches subsided, the February 4th interface was deeply buried and didn’t produce further triggered avalanches. Interestingly, as recent as February 18th, this interface was found in a profile and produced some mixed and head-scratching test results. While this interface is not a concern for triggered avalanches, you may still be able to find it 4-6 feet below the surface, especially on sheltered, shaded slopes at upper elevations.

 

A profile from 6460ft on a northeast aspect in the Chiwaukum Range on February 18th shows the February 4th layer. Small column tests produced sudden planar results while a Propagation Saw Test did not indicate propagation.

A more elusive and problematic layer for triggered avalanches was the February 13th interface. This was also most prominent in the Stevens Pass and East Central zones in addition areas of the West Central and Snoqualmie Pass zones. At Stevens Pass a combination of large (2.0-4.0mm) surface hoar and small (0.5mm) near-surface facets developed on a variety of surfaces and were buried on the 13th. The weak layer was most problematic on east through south aspects between 4,500-6,000ft, where the grains were preserved as they rested on a thin crust. It seemed that outside of this aspect and elevation range either 1) the weak grains did not persist enough to be triggered by travelers or 2) the underlying layer, or bed surface, wasn’t hard enough for the weak layer to be reactive. A number of parties reported natural and triggered avalanches on southeast aspects during the storm cycle on Presidents Day weekend. This included a party of three that were uninjured after all being caught, with two full-burials, in a surprising avalanche near Skyline Lake on the 17th. As of February 20th, the interface is 1-3 feet below the surface and has become difficult to trigger. The February 13th interface is still visible in the snowpack and we continue to monitor it. It will likely become inactive before the end of the month.

In summary, February has been a great time to explore the mountains and enjoy the longer days for recreating in this season’s robust snowpack. Though, not without complexity and variability. Continue to monitor changing conditions and check the daily avalanche forecasts for the most up to date information. 

Avalanche Problems

Wind Slabs

Strong winds at ridgetop make wind slabs your primary concern at the outset of the day. These slabs will build throughout the day to produce large avalanches that you can trigger. Keep it simple and dial back your terrain selection, using your observations of blowing snow, fresh wind-drifts or cornices, and smoothe lense-shaped pillows to confirm which slopes have received wind-loading. Avoid all lee slopes 30 degrees, keeping in mind that these slabs may rest on top of a weak interface buried 2/21 that creates the potential for more widely propagating slabs that break on steeper slopes nearby or above you. On wind-scoured slopes, there may be minimal avalanche danger, but firm crusts may make travel difficult.

On days like Sunday, if you see signs of avalanche activity, conditions will only get worse and you need to dial your terrain selection way back.

Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.

 

Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..

 

Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.

 

Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.

Aspects: All aspects.

Elevations: Alpine, Treeline.

Likelihood: Likely

Expected Size: 1 - 1

Storm Slabs

Snow piling up on Sunday will make storm slabs easier to trigger later in the day. Storm slabs should form near and below treeline in wind-sheltered terrain where they tend to break on unsupported slopes steeper than 30 degrees where 8” or more of new snow accumulates. 

Keep in mind the potential for these avalanches break broadly across terrain features on NW-N-NE-E aspects where weak snow interfaces may be preserved. A shovel tilt test can be a great way to check for a reactive weak layer: Isolate a column with the new snow plus a few inches of old snow. Tilt the shovel slightly and give it a few taps. This can confirm the existence of the problem, but a negative reading doesn’t deny the existence of weak interfaces in other areas.

Release of a soft cohesive layer (a slab) of new snow that breaks within the storm snow or on the old snow surface. Storm-slab problems typically last between a few hours and few days. Storm-slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.

 

You can reduce your risk from Storm Slabs by waiting a day or two after a storm before venturing into steep terrain. Storm slabs are most dangerous on slopes with terrain traps, such as timber, gullies, over cliffs, or terrain features that make it difficult for a rider to escape off the side.

 

Storm slabs usually stabilize within a few days, and release at or below the trigger point. They exist throughout the terrain, and can be avoided by waiting for the storm snow to stabilize.

Elevations: Treeline, Below Treeline.

Likelihood: Possible

Expected Size: 1 - 1