Avalanche Forecast
Regions: Cascades - South West.
Reactive wind slabs are expected to build and you can trigger an avalanche where 6” of wind-deposited snow sits on the old snow interface. If the sun comes out at all on Tuesday morning, loose wet activity may be large and entrain up to 1 ft of less consolidated snow. Negotiate these problems by choosing terrain away from the sun in the morning, avoiding terrain in the lee of ridges with wind transported snow in the afternoon.
Discussion
Snow and Avalanche Discussion
The forecast hinges on solar inputs in the morning and wind transport of fresh snow in the afternoon. A rain shadow near Crystal could yield some sunshine and also less snow accumulation and transport. Â
Crystal Mountain Patrol reported 7-10â of new snow with moderate wind transport on Tuesday. Wind slabs were more reactive in the morning when temperatures were cooler. These slabs became more stubborn in the afternoon with warming temperatures in spite of the moderate wind transport. Loose wet avalanche activity was small during minimal sun breaks in isolated locations on Tuesday, so plenty of snow remains to create loose snow avalanches if the sun comes out.
Paradise picked up 10â of new snow with moderate wind transport.
Even though the recent weather feels like winter, there are several springtime hazards in the mountains. Creeks, particularly at low elevations, opened wide during the recent warm weather. Glide cracks continue to grow and a few glide avalanches have occurred. Holes appeared near many trees and rock. Cornices continue to sag overhead. Use caution when you travel near any of these spring hazards that could be hidden by recent snowfall.
Snowpack Discussion
April 9th, 2019
Spring Conditions
The snowpack and weather have shifted solidly to spring-like conditions. A major warm-up started in mid-March with a prolonged period of strong sun and warm temperatures. This created a major difference between the snowpack on sunny slopes and that on shaded aspects. More recently, warm, wet, and sometimes weak spring storms have brought more rain than snow. The bulk of the precipitation with these storms focused on the southern forecast zones. Even so, mid-elevation rain established a dramatic snow line (about 4-4,500ft) below which the snowpack is minimal to non-existent in most zones. Going into the second week in April, intense snow and wind drove a prolonged period of High danger at Mt Hood.
A crown of a very large avalanche (D3+) above Mt. Hood Meadows resort. 04/08/2019. Photo Credit: Peter Moore.
Challenging Weather Forecasts
The Cascades have been experiencing unsettled spring weather with rain to many low and mid-elevation slopes and snow at upper elevations. Spring weather forecasts in the Cascades are notoriously challenging. With these storms, the weather models have been inconsistent and the accuracy has been limited to 12-24 hours, at best. A trend has been significant precipitation amounts for the Mount Hood area and other south-central Cascade volcanoes.Â
Very bare southeast aspects of Rock Mtn/Nason Ridge. April 2nd. Photo: Josh Hirshberg
Shrinking Snowpack
From the peak height of snow in mid to late February through early April, mountain weather stations in the 4,000-5,000ft range showed an average of 27% decrease in height of snow. The percentage decrease ranged from 22-29%. This year's spring snowmelt is much earlier than normal. If youâre traveling in the mountains, the loss of snow coverage is most noticeable on southerly, sun-exposed slopes and below 4,000ft. On northerly aspects and slopes above 5,500ft, the snowpack has seen less dramatic changes and has even maintained some dry layers. On upper elevation shaded slopes thereâs still potential for large wet slab avalanches with prolonged warm temperatures or high elevation rain events.
A natural loose wet avalanche (D1), Lichtenberg Mtn, N, 4,850ft. 4/7/2019. Photo: Will Govus
Spring avalanche considerations
As you head into the mountains there are a few questions to ask yourself common to spring avalanche conditions:
-
Can you trigger avalanches due to new snow?
-
If so, would they be storm slabs or wind slabs? And where?
-
-
Can you trigger avalanches due to warming or rain?
-
Will recent snow be warmed enough to result in loose wet avalanches?
-
Will these avalanches be predictable point releases or more destructive wet slabs or gouging loose wet avalanches?
-
What are the recent high and low temperatures and the forecasted temperatures during the time youâll be in the mountains?
-
How is the cloud cover contributing to the melting or freezing of surface snow? Did clear skies allow for a sufficient overnight freeze? Will the sun be strong enough to weaken surface layers?
-
Debris from a natural loose wet avalanche (D2), Lichtenberg Mtn, SW, 5,000ft. 4/7/2019. Photo: Josh Hirshberg
Other Considerations
In addition to daily avalanche hazard, the early snowmelt has created other travel considerations. Some roads and lower elevation slopes may not have enough continuous snow coverage for travel on snow machines. Holes melted around rocks, trees, and creeks could create a fall hazard. When nighttime temperatures and cloud cover allow for surface freezes, bring appropriate equipment to mitigate slip and fall hazard on steep slopes.
The last daily avalanche forecast for all zones will be issued for April 14th. Statewide mountain weather forecast and weekly avalanche condition advisories will continue through May. The weather station data is available year round. Keep checking the advisories and help us out by submitting observations when you are in the mountains.
Glide avalanches and holes opening up in rocky terrain on an east aspect of Mount Herman. 4/3/19 Photo: Andrew Kiefer
Avalanche Problems
Wind Slabs
The next round of weather will impact the West South Zone on Wednesday with increasing snowfall and wind transport building slabs. Slabs are likely to be shallower and more easily managed at Crystal than the more rapidly growing slabs at Paradise and White Pass. Wind slab hazard will peak late in the day as the size of these slabs increases. Monitor active wind transport near ridgelines and for punchy snow. If you find 6” or more of fresh snow in your terrain, avoid wind-loaded slopes steeper than 35 degrees Monday.
Release of a cohesive layer of snow (a slab) formed by the wind. Wind typically transports snow from the upwind sides of terrain features and deposits snow on the downwind side. Wind slabs are often smooth and rounded and sometimes sound hollow, and can range from soft to hard. Wind slabs that form over a persistent weak layer (surface hoar, depth hoar, or near-surface facets) may be termed Persistent Slabs or may develop into Persistent Slabs.
Wind Slabs form in specific areas, and are confined to lee and cross-loaded terrain features. They can be avoided by sticking to sheltered or wind-scoured areas..
Wind Slab avalanche. Winds blew from left to right. The area above the ridge has been scoured, and the snow drifted into a wind slab on the slope below.
Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.
Aspects: All aspects.
Elevations: All elevations.
Likelihood: Possible
Expected Size: 1 - 1
Loose Wet
Up to 10” of recent snow will quickly produce loose wet avalanches that may be large if the sun comes out. Watch for this in the morning, particularly in the Crystal Area. Don’t expose yourself to large steep slopes that may experience direct sunshine. If you encounter heavy, wet snow, seek to reduce your slope angle and exposure to the overhead hazard and move to slopes facing away from the sun.
Avoid triggering a wet loose avalanche near a terrain trap such as cliff bands, open creeks, exposed rocks and trees, etc, that would amplify the consequences of even a small wet loose avalanche. If you find wet snow deeper than your ankle, make the easy call to stick to lower angled terrain.
Release of wet unconsolidated snow or slush. These avalanches typically occur within layers of wet snow near the surface of the snowpack, but they may quickly gouge into lower snowpack layers. Like Loose Dry avalanches, they start at a point and entrain snow as they move downhill, forming a fan-shaped avalanche. They generally move slowly, but can contain enough mass to cause significant damage to trees, cars or buildings. Other names for loose-wet avalanches include point-release avalanches or sluffs. Loose Wet avalanches can trigger slab avalanches that break into deeper snow layers.
Travel when the snow surface is colder and stronger. Plan your trips to avoid crossing on or under very steep slopes in the afternoon. Move to colder, shadier slopes once the snow surface turns slushly. Avoid steep, sunlit slopes above terrain traps, cliffs areas and long sustained steep pitches.
Several loose wet avalanches, and lots of pinwheels and roller balls.
Loose wet avalanches occur where water is running through the snowpack, and release at or below the trigger point. Avoid terrain traps such as cliffs, gullies, or tree wells. Exit avalanche terrain when you see pinwheels, roller balls, a slushy surface, or during rain-on-snow events.
Aspects: All aspects.
Elevations: All elevations.
Likelihood: Possible
Expected Size: 1 - 1